ANNIHILATING SUBMODULE GRAPHS FOR MODULES OVER COMMUTATIVE RINGS
نویسنده
چکیده مقاله:
In this article, we give several generalizations of the concept of annihilating ideal graph over a commutative ring with identity to modules. Weobserve that over a commutative ring $R$, $Bbb{AG}_*(_RM)$ isconnected and diam$Bbb{AG}_*(_RM)leq 3$. Moreover, if $Bbb{AG}_*(_RM)$ contains a cycle, then $mbox{gr}Bbb{AG}_*(_RM)leq 4$. Also for an $R$-module $M$ with$Bbb{A}_*(M)neq S(M)setminus {0}$, $Bbb{A}_*(M)=emptyset$if and only if $M$ is a uniform module and ann$(M)$ is a primeideal of $R$.
منابع مشابه
Annihilating Submodule Graphs for Modules over Commutative Rings
In this article, we give several generalizations of the concept of annihilating an ideal graph over a commutative ring with identity to modules. We observe that, over a commutative ring, R, AG∗(RM) is connected, and diamAG∗(RM) ≤ 3. Moreover, if AG∗(RM) contains a cycle, then grAG∗(RM) ≤ 4. Also for an R-module M with A∗(M) ̸= S(M) \ {0}, A∗(M) = ∅, if and only if M is a uniform module, and ann(...
متن کاملannihilating submodule graphs for modules over commutative rings
in this article, we give several generalizations of the concept of annihilating ideal graph over a commutative ring with identity to modules. weobserve that over a commutative ring $r$, $bbb{ag}_*(_rm)$ isconnected and diam$bbb{ag}_*(_rm)leq 3$. moreover, if $bbb{ag}_*(_rm)$ contains a cycle, then $mbox{gr}bbb{ag}_*(_rm)leq 4$. also for an $r$-module $m$ with$bbb{a}_*(m)neq s(m)setminus {0}$, $...
متن کاملAssociated Graphs of Modules Over Commutative Rings
Let $R$ be a commutative ring with identity and let $M$ be an $R$-module. In this paper we introduce a new graph associated to modules over commutative rings. We study the relationship between the algebraic properties of modules and their associated graphs. A topological characterization for the completeness of the special subgraphs is presented. Also modules whose associated graph is complete...
متن کاملNONNIL-NOETHERIAN MODULES OVER COMMUTATIVE RINGS
In this paper we introduce a new class of modules which is closely related to the class of Noetherian modules. Let $R$ be a commutative ring with identity and let $M$ be an $R$-module such that $Nil(M)$ is a divided prime submodule of $M$. $M$ is called a Nonnil-Noetherian $R$-module if every nonnil submodule of $M$ is finitely generated. We prove that many of the properties of Noetherian modul...
متن کاملJónsson Modules over Commutative Rings
Let M be an infinite unitary module over a commutative ring R with identity. Then M is called a Jónsson module provided every proper submodule of M has smaller cardinality than M. These modules have been studied by several algebraists, including Robert Gilmer, Bill Heinzer, and the author. In this note, we recall the major results on Jónsson modules to bring the reader up to speed on current re...
متن کاملAN INTEGRAL DEPENDENCE IN MODULES OVER COMMUTATIVE RINGS
In this paper, we give a generalization of the integral dependence from rings to modules. We study the stability of the integral closure with respect to various module theoretic constructions. Moreover, we introduce the notion of integral extension of a module and prove the Lying over, Going up and Going down theorems for modules.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 3 شماره 1
صفحات 39- 47
تاریخ انتشار 2015-06-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023